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Abstract

A numerical study of the laminar mixed convection of micropolar ¯uids in a square cavity with localized heat
source is presented. The ¯ow in the cavity includes the externally induced stream at ambient temperature and the
free ¯ow induced by heat source. The transport equations of vorticity, angular momentum, and energy are solved

with the aid of the cubic spline collocation method. The computation is carried out for wide ranges of Reynolds
number, Grashof number, and various material parameters associated with the micropolar ¯uids. Emphasis is aimed
at the signi®cant features displayed by the micropolar ¯uids. The results indicate that both the ¯ow and the thermal
®elds depend on the vortex viscosity and spin gradient viscosity to a large extent. The heat transfer coe�cient of

micropolar ¯uids is found to be smaller than that of Newtonian ¯uids. # 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

A number of studies on the convective heat transfer
in enclosure, such as solar collection systems, room

ventilation, and electronic circuitry have been exten-
sively reported regarding the cooling process [1±3].
Recently, considerable attention has turned to mixed

convection problems owing to many practical appli-
cations including cooling of electronic equipments and
devices [4,5]. In an enclosure, the interaction between

the external forced stream and the buoyancy driven
¯ow induced by the increasing high heat ¯ux from
electronic modules leads to the possibility of complex
¯ows. Therefore it is important to understand the heat

transfer characteristics of mixed convection in an
enclosure.
Mixed convection ¯ow and heat transfer have been

studied for inclined channels with discrete heat sources

[6,7]. It was found in [6] that the best performance in

heat transfer is obtained when the channel is in a verti-

cal location. In [7], it pointed out that the normalized

Nusselt number is a decreasing function of the Rey-

nolds number and an increasing function of the

inclined angle. Papanicolaou and Jaluria [8,9] studied

mixed convection from an isolated heat source in a

rectangular enclosure. They indicated that ¯ow pat-

terns generally consist of high- or low-velocity recircu-

lating cells due to buoyancy forces generated by the

heat source. In addition, the e�ect of the thermal con-

ductivity of the cavity walls on the heat transfer

phenomena was investigated in Ref. [9]. A later investi-

gation [10] further presented turbulent ¯ow in a cavity

by k±e model. Turbulent results were obtained for

Re � 1000 and 2000 in the ranges of Gr � 5 �
107± 5� 108: A detailed study of mixed convection in

a partially divided rectangular enclosure was presented

by Hsu et al. [11]. It was observed that the heat trans-

fer coe�cient decreases rather rapidly as the height of

the partition is more than about half of the total

height of the enclosure.
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The previous studies of convective heat transfer

deal only with Newtonian ¯uids. The extension to
non-Newtonian ¯uids is important for the thermal

design of industrial equipments dealing with certain
¯uids, such as ferro liquids, colloidal ¯uids, animal

bloods, and exotic lubricants. The theory of micro-

polar ¯uids developed by Eringen [12±14] can be
used to describe successfully the non-Newtonian

behavior of the above ¯uids. In the theory, the

local e�ects arising from microstructure and intrinsic
motions of the ¯uid elements are taken into

account. Jena and Bhattacharyya [15] proposed the
e�ect of microstructure on thermal convection in a

rectangular box heated from below using the Galer-

kin method, whereby obtained critical Rayleigh
numbers for various material parameters. They con-

cluded that the critical Rayleigh number of a micro-
polar ¯uid is higher than that of a Newtonian

¯uid. Recently, Hsu and Chen [16] studied the natu-

ral convection of micropolar ¯uids in a rectangular
enclosure heated from below. They indicated that

the heat transfer coe�cient is lower for a micropo-

lar ¯uid in comparison with a Newtonian ¯uid.
Furthermore, Hsu and Tsai [17] investigated natural

convection of micropolar ¯uids in an enclosure with
a partition. In Ref. [17], the e�ects of vortex vis-

cosity and spin gradient viscosity on heat transfer

coe�cient and microrotation were analyzed numeri-
cally.

The purpose of this paper is to investigate the e�ect
of the characteristic parameters of micropolar ¯uids on

mixed convection in a cavity. The phenomena of both
¯ow and thermal ®elds are displayed for e�ective com-
parison as well.

2. Mathematical formulation

Consider a square cavity with a ®nite-length con-
stant-¯ux heat source embedded on the left vertical
wall; the in¯ow opening located on the left vertical

wall; and the out¯ow opening on the opposite vertical
wall. Details of the geometry and coordinate system
are shown in Fig. 1. The depth of the cavity is pre-
sumed to be long enough so that the whole model is

two-dimensional. For simplicity, the two openings are
set equal to the height of the heat source. The walls of
the cavity are taken as adiabatic. The ¯ow velocities of

the ¯uid through the in¯ow opening are assumed to be
uniform.
The ¯ow is assumed to be steady, laminar, and

incompressible. The variation of density with tempera-
ture follows the Boussinesq approximation. The gov-
erning equations for micropolar ¯uids in a cavity can

be described in dimensionless form by

r2C � ÿO �1�

Nomenclature

A height of the in¯ow and out¯ow openings
B material parameter [= A2=j]
Gr Grashof number [= gbDTA3=n2]
H height of the cavity
j microinertia per unit mass
k thermal conductivity

kv vortex viscosity
Nu Nusselt number
Pr Prandtl number [= n=a]
q 00 heat ¯ux per unit area of the source
Re Reynolds number [= viA=n]
T temperature
u, v horizontal and vertical velocity components,

respectively
U, V dimensionless velocity components �U � u=vi,

V � v=vi]

vi inlet ¯ow velocity
W width of the cavity
x, y Cartesian coordinates

X, Y dimensionless Cartesian coordinates �X � x=A,
Y � y=A]

a thermal di�usivity of the ¯uid
b coe�cient of thermal expansion
g spin gradient viscosity

s angular velocity component
u dimensionless microrotation [= sA=vi]
D material parameter [= kv=m]
l material parameter [= g=�jm�]
DT temperature scale [= q 00A=k]
y dimensionless temperature [= �Tÿ Ti�=DT]
n kinematic viscosity
c stream function
C dimensionless stream function [= c=�viA�]
o vorticity

O dimensionless vorticity [= oA=vi]
Z buoyancy parameter [= Gr=Re2]

Subscripts

i in¯ow
o out¯ow
s heat source
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The above equations are generalized by using the fol-

lowing dimensionless variables

X � x

A
, Y � y

A
, U � u

vi

, V � v

vi

,

C � c
viA

, O � oA
ui

, u � sA
vi

, y � Tÿ Ti

DT

where the characteristic length A is the height of the
in¯ow opening.
For the boundary conditions, the vertical and the

horizontal solid walls are impermeable (U = V = 0)
except for the in¯ow and out¯ow openings. A uniform
inlet velocity pro®le (U = 1, V = 0) is taken across

the in¯ow opening. The no-slip conditions at the walls
(U = V = 0) state that the stream function C is con-
stant at the walls. Thus, C � 0 can be arbitrarily

chosen for the bottom horizontal wall and both verti-
cal walls that lie below the two openings. While at the
top surface, C � 1 is speci®ed, since the non-dimen-

sional ¯ow rate is equal to 1. Therefore, by the de®-
nition of stream function, a linear variation of the

form C � Y� constant is applied for the stream func-
tion at the in¯ow opening.
A third-order polynomial interpolation for the

vorticity near the walls is used and is written as

Ow � 7Cw ÿ 8Cw�1 �Cw�2
2�Dn�2

� o�Dn2 � �5�

where n is the direction normal to the wall. At the
in¯ow opening, O � 0 is chosen since constant velocity

condition (U = 1, V = 0) is speci®ed.
For the microrotation, the following boundary con-

ditions are assumed at the solid walls,

u � z
@V

@X
at X � 0, 1 �6a�

u � ÿz@U
@Y

at Y � 0, 1 �6b�

where z is a constant and 0RzR1: The case z � 0,
which indicates u � 0, represents concentrated particle

¯ows in which the microelements close to the wall sur-
face are unable to rotate [18]. The case z � 0:5 indi-
cates the vanishing of antisymmetric part of the stress

tensor and denotes weak concentrations [19]. The case
z � 1, as suggested by Peddieson [20], is used for the
modelling of turbulent boundary layer ¯ows. The case

of z � 0 is considered in the present study due to the
paper limitation.
At the in¯ow opening, the temperature condition is

y � 0: The condition @y=@n � 0 is considered for all
adiabatic walls, while @y=@X � ÿ1 is for the heat
source surface. At the out¯ow the gradients of all func-
tions have been taken equal to zero, as used in many

previous studies [6,10,11]. In order to achieve this ade-
quate condition, a channel of dimensionless length
with 1/8 of the width of the cavity is imposed at the

outlet opening, as is applied in Ref. [10].
The mean Nusselt number is given by

Nu � 1

kLs

�Ls

0

q 00A
Ts�y�Ti

dy �
�1
0

1

ys�Y� dY �7�

Here Ls is set equal to A.

3. Numerical scheme

The computational procedure is similar to the one
described by Hsu et al. [11] and Rubin and Graves

[21]. The resulting system of the coupled Eqs. (1)±(4)
with the associated boundary conditions are solved
simultaneously by cubic spline approximation method.

Fig. 1. Physical model of the cavity.
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The spline alternating direction implicit procedure is

adopted to perform the numerical computation. Test
for the accuracy of grid ®neness is made for the
arrangement of 41 � 45 and 81 � 91. It is found that

the employment of a 41 � 45 non-uniform grid
arrangement can provide su�ciently accurate numeri-
cal solutions. The 81 � 91 non-uniform nodes are

adopted only at large Re numbers.
Employing the false transient technique, the govern-

ing Eqs. (1)±(4) are transformed into the following

form:

j
p� 1

2
ij � F p

ij � G p
ij m

p� 1
2

jij
� S p

ij M
p� 1

2
jij

�8�

j p�1
ij � F

p� 1
2

ij � G
p� 1

2
ij l p�1

jij
� S

p� 1
2

ij L p�1
jij

�9�

in which i and j refer to the computational nodes, p is
Fig. 2. Streamlines for Z � 1, B = 0.1, and D � l � 1: (a) Re
= 100; (b) Re = 1000.

Fig. 3. Maximum source temperatures for B = 0.1 and

D � l � 1:
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the false time step, j represents for the function
C, O, n and y, m, l, M and L are the ®rst and second

derivatives of j with respect to X and Y, respectively,
and Fij, Gij, and Sij are the function coe�cients calcu-
lated at the previous time step.

After transforming by cubic spline collocation
method, Eqs. (8) and (9) are rewritten in tridiagonal
system containing with the function values or its ®rst

two derivatives, that is,

Ajÿ1F
p� 1

2
ijÿ1 � BjF

p� 1
2

ij � Cj�1F
p� 1

2
ij�1 � Dj �10�

Aiÿ1F
p�1
iÿ1, j � BiF

p�1
ij � Ci�1F

p�1
i�1, j � Di �11�

where F represents the functions C, O, u and y or its

®rst two derivatives. Thus, Eqs. (10) and (11) can be
easily solved by the Thomas algorithm.
The solution procedures for the coupled Eqs. (1)±(4)

are iterated until the maximum relative change in all
the ¯ow functions in the cavity satis®es the following
convergence condition�����Fz

ij ÿ Fzÿ1
ij

Fz
max

�����R10ÿ4 �12�

Fig. 5. Velicity vectors for Re = 100, Z � 1, B = 0.1, and

l � 1: (a) D � 0:5; (b) D � 5:0:

Fig. 4. Isotherms for Re = 100, B = 0.1, and D � l � 1: (a)
Z � 0:001 �ymax � 0:265�; (b) Z � 1 �ymax � 0:194�
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where F refers to C, O, u and y and z denotes the
number of iteration.

The mathematical computation was validated by
checking the solutions against those by Papanicolaou
and Jaluria [8], which studied mixed convection in a

rectangular enclosure with air ¯owing through the
openings. The comparison was shown in Table 1 for
various Re and Z values. It is seen that the present sol-

utions obtained by similar simulation fairly agree with
the predicted results in Ref. [8].

4. Results and discussion

The numerical simulation was performed with Pr =
10. The governing parameters considered in the prob-

lem were Re, Gr, and various material parameters
characterized by micropolar ¯uids. All these par-

ameters were varied over wide ranges to investigate
their e�ects on the thermal and ¯ow phenomena. The
geometric model depicted in Fig. 1 was speci®ed as fol-

lows: H=W � 1, A=H � 0:25, and Ls � A: The two
openings were ®xed at di=H � do=H � 0:875: The
values of governing parameters Re and Z were Re =

50±1000 and Z � 0:001±10: The values chosen for Re
were in the laminar regime. Solutions of periodic oscil-
lation behavior were obtained for greater values of Z,
i.e., Z > 10: The same oscillatory phenomenon men-
tioned above was also predicted in Ref. [8] for Newto-
nian ¯uids. The material parameters for micropolar
¯uids considered were B = 0.1, D � 0:1±10 and l �
0:1±10: These parameter values satisfy the thermodyn-
amic restriction noted by Eringen [14].
The computed streamlines for the solutions at var-

ious values of Re while keeping Z ®xed are shown in
Fig. 2. The ®rst observation in these ®gures is that the
streamlines are almost straight at large Re, and the

amount of the recirculation due to boundary increases
as Re increases. Therefore, the greater shear force
induced by ¯uid ¯ow at larger Re value causes stronger

recirculation and enhances the heat transfer in the cav-
ity, as is shown in Fig. 3 later. The e�ect of Z ��
Gr=Re2� on the isotherms is shown in Fig. 4 while
keeping Re ®xed. Clearly the temperature gradients at

the heat source and the heating of the central region of
the cavity increase as Z increases.

Fig. 6. Microrotation contours for Re = 100, Z � 1, B = 0.1, and l � 1: (a) D � 0:5; (b) D � 5:0:

Table 1

Comparison of some results of validity (Pr = 0.733)a

Re Z Nu ymax

Ref. [8] Present Ref. [8] Present

100 0.1 1.45 1.53 0.7 0.60

100 1 2.30 2.50 0.48 0.43

1000 0.1 2.20 2.44 0.52 0.48

1000 1 3.75 3.89 0.30 0.27

a Values of Ref. [8] were approximately read.
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Representative velocity vector distributions for var-
ious parameters D are plotted in Fig. 5 with Re = 100,

and Z � l � 1: From the ®gure, it is seen that weak
(or even no) recirculation ¯ow due to boundary is
present in the cavity. The primary cause of this beha-

vior is that greater value of vortex viscosity D corre-
sponds to larger resistance to the ¯uid motion, which
then diminishes the recirculating ¯ow.

The corresponding microrotation distributions in the
cavity are shown in Fig. 6 for two values of D: An
increase in the value of D implies a higher vortex vis-

cosity of ¯uid which promotes the microrotation of
micropolar ¯uids. The e�ects of the material parameter
D on both the stream function and microrotation can
be explained in Fig. 7. It reveals that an increase in the

value of D reduces the stream function but enhances
the microrotation in the recirculation cell. A greater
value of stream function for a Newtonian ¯uid (i.e.,

B � D � l � 0� is also depicted in the ®gure. It is con-
cluded that a Newtonian ¯uid has stronger recircula-
tion ¯ow than a micropolar ¯uid.

It is interesting to investigate the in¯uence of spin
gradient parameter l on the ¯ow ®eld. Fig. 8 displays
the distributions of microrotation in the cavity for var-

ious values of l: The gross amounts of microrotation
distribution are smaller for greater value of l: A
further explanation for the e�ect of parameter l on the
¯ow characteristics is shown in Fig. 9. In this ®gure,

both stream function and microrotation, that are the
values at the recirculation core, are plotted against the
parameter l: It is found that the microrotation at the

recirculation cell decreases as the spin gradient vis-
cosity l increases. However, except at small value of l,
no signi®cant variation of stream function at the recir-

culation cell occurs for l > 1: One may also notice
how the stream function at recirculation core gradually
increase with decreasing value of l, until it reaches the
maximum amount of l � 0 (and B � D � 0), which is

speci®cally a Newtonian ¯uid.
Fig. 10 shows a very illustrative picture of how

the heat is transferred in accordance with Re and

Z: Keeping Re constant, the average Nusselt number
increases gradually with increasing value of Z: Also,
the average Nusselt number is found to increase as

Re increases at ®xed Z: Therefore, it can be con-
cluded that more heat transfer from the heat source
is expected in the case of large parameter value of

Re or Z: The dashed lines in the ®gure indicate the
variation of average Nusselt number corresponding
to the case of a Newtonian ¯uid. At the same
values of Re and Z, the average Nusselt number for

a Newtonian ¯uid is higher than the case for a
micropolar ¯uid, especially at large Re value. It is a
fact that both the vortex viscosity parameter and

spin gradient viscosity parameter l retard the ¯uid
motion in the cavity. Smaller values of stream func-

tion for micropolar ¯uids at the recirculation cell

are obtained, as are shown in Figs. 6 and 8. This

fact explains the results of lower average Nusselt

number for a micropolar ¯uid in Fig. 9.

Fig. 11 displays the dependence of average heat

transfer coe�cient and the maximum surface tempera-

ture on the material parameter D: As pointed in Fig. 6,

an increase in D results in a decrease in stream func-

tion at the recirculation core. Therefore, less heat

transfer rate from the heat source is achieved due to

Fig. 7. Maximum values of recirculation stream funcion and

microrotation for Re = 100, B = 0.1, and Z � l � 1:
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decreased recirculating ¯ow. In addition, the lower

heat transfer rate accompanies with a higher tempera-

ture on the source surface, which is also shown in Fig.

11.

Some quantitative numerical results are tabulated in

Table 2. The computational values indicate that

increasing the value of D leads to a decrease in the

values of the average Nusselt number. Whereas, the

variation of l has almost no in¯uence on the average

Nusselt number. The numerical value of the microro-

tation depends to a large extent on both the values
of D and l: An increased microrotation can be
obtained by increasing the value of D or by reducing

the value of l:

5. Conclusion

Mixed convection of micropolar ¯uids in a cavity

Fig. 8. Microrotation contours for Re = 100, Z � 1, B = 0.1, and D � 1: (a) l � 0:5; (b) l � 5:0:

Fig. 9. Maximum values of recirculation stream function and

microrotation for Re = 100, B = 0.1, and Z � D � 1:

Table 2

Comparison of selected results for Pr = 10 and B = 0.1 a

Re Z D l Nu Cmin ymax nmin

50 1 1 1 3.3433 ÿ0.0673 0.2724 ÿ0.0214
100 1 0 0 5.2544 ÿ0.1854 0.1727 ±

100 1 0.5 0.5 5.0311 ÿ0.1722 0.1809 ÿ0.0203
100 0.01 1 1 3.31193 ÿ0.1443 0.2621 ÿ0.0197
100 1 1 1 4.7132 ÿ0.1583 0.1940 ÿ0.0197
100 10 1 1 6.8322 ÿ0.2022 0.1327 ÿ0.0232
100 1 5 1 3.8653 ÿ0.0572 0.2331 ÿ0.0539
100 1 10 1 3.2844 ÿ0.0273 0.2739 ÿ0.0717
100 1 1 5 4.7552 ÿ0.1574 0.1917 ÿ0.0059
100 1 1 10 4.7549 ÿ0.1571 0.1917 ÿ0.0034
100 1 5 5 3.6781 ÿ0.0449 0.2456 ÿ0.0225
500 1 0 0 11.500 ÿ0.2264 0.0757 ±

500 1 1 1 10.249 ÿ0.2211 0.0871 ÿ0.0221
1000 1 1 1 14.543 ÿ0.2322 0.0594 ÿ0.0253

a B � D � l � 0: Newtonian ¯uids.
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with an isolated heat source has been analyzed numeri-

cally. Both the thermal and ¯ow ®elds in the cavity are

also computed for a Newtonian ¯uid for comparison

reason. Of interests are the e�ects of governing par-

ameters (Re and Gr ) and material parameters �D and

l� on the ¯ow ®elds and the average Nusselt number.

The numerical solutions indicate that increasing the

amount of Re or Gr leads to higher heat transfer coef-

®cient, higher heat source temperature, and higher

value of recirculation. The heat transfer coe�cient is

lower for a micropolar ¯uid, as compared to a Newto-

nian ¯uid.

Fig. 10. Average Nusselt numbers for B = 0.1 and D � l � 1:

Fig. 11. Average Nusselt numbers and maximum source temperatures for Re = 100, B = 0.1, and Z � l � 1:
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The results performed show a very signi®cant e�ect
of microstructure on the thermal and ¯ow ®elds. Con-

siderable e�ects on both thermal and ¯ow ®elds are
found for variation of vortex viscosity, but are little by
spin gradient viscosity. The amount of microrotation

in the cavity increases when vortex viscosity increases.
However, its value becomes lower as spin gradient vis-
cosity is higher.
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